Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions About   Site Map   Contact Us
 
Home A service of the U.S. National Library of Medicine®
 
 
Printer-friendly version
MT-ND6

MT-ND6

Reviewed August 2006

What is the official name of the MT-ND6 gene?

The official name of this gene is “mitochondrially encoded NADH dehydrogenase 6.”

MT-ND6 is the gene's official symbol. The MT-ND6 gene is also known by other names, listed below.

Read more about gene names and symbols on the About page.

What is the normal function of the MT-ND6 gene?

The MT-ND6 gene provides instructions for making a protein called NADH dehydrogenase 6. This protein is part of a large enzyme complex known as complex I, which is active in mitochondria. Mitochondria are structures within cells that convert the energy from food into a form that cells can use. These cellular structures produce energy through a process called oxidative phosphorylation, which uses oxygen and simple sugars to create adenosine triphosphate (ATP), the cell's main energy source.

Complex I is one of several enzyme complexes necessary for oxidative phosphorylation. Within mitochondria, these complexes are embedded in a tightly folded, specialized membrane called the inner mitochondrial membrane. During oxidative phosphorylation, mitochondrial enzyme complexes carry out chemical reactions that drive the production of ATP. Specifically, they create an unequal electrical charge on either side of the inner mitochondrial membrane through a step-by-step transfer of negatively charged particles called electrons. This difference in electrical charge provides the energy for ATP production.

Complex I is responsible for the first step in the electron transport process, the transfer of electrons from a molecule called NADH to another molecule called ubiquinone. Electrons are then passed from ubiquinone through several other enzyme complexes to provide energy for the generation of ATP.

How are changes in the MT-ND6 gene related to health conditions?

Leber hereditary optic neuropathy - caused by mutations in the MT-ND6 gene

Several mutations in the MT-ND6 gene have been identified in people with Leber hereditary optic neuropathy. Each of these mutations changes a single protein building block (amino acid) in the NADH dehydrogenase 6 protein. One common MT-ND6 mutation is responsible for about 14 percent of all cases of Leber hereditary optic neuropathy, and it is the most common cause of this disorder among people of French Canadian descent. This genetic change, written as T14484C or Met64Val, replaces the amino acid methionine with the amino acid valine at protein position 64. The T14484C mutation is associated with a good long-term prognosis; affected people with this genetic change have a 37 percent to 65 percent chance of some visual recovery.

Researchers are investigating how mutations in the MT-ND6 gene lead to Leber hereditary optic neuropathy. These genetic changes appear to prevent complex I from interacting normally with ubiquinone, which may affect the generation of ATP. MT-ND4 mutations may also increase the production within mitochondria of potentially harmful molecules called reactive oxygen species. It remains unclear, however, why the effects of these mutations are often limited to the nerve that relays visual information from the eye to the brain (the optic nerve). Additional genetic and environmental factors probably contribute to the vision loss and other medical problems associated with Leber hereditary optic neuropathy.

other disorders - associated with the MT-ND6 gene

A mutation in the MT-ND6 gene also has been identified in a small number of people with Leigh syndrome, a progressive brain disorder that typically appears in infancy or early childhood. Affected children may experience vomiting, seizures, delayed development, muscle weakness, and problems with movement. Heart disease, kidney problems, and difficulty breathing can also occur in people with this disorder.

The MT-ND6 mutation that can cause Leigh syndrome, written as G14459A or Ala72Val, replaces the amino acid alanine with the amino acid valine at protein position 72. This genetic change also has been found in people with Leber hereditary optic neuropathy and a movement disorder called dystonia, which involves involuntary muscle contractions, tremors, and other uncontrolled movements. This mutation appears to disrupt the normal assembly or activity of complex I in mitochondria. It is not known, however, how this MT-ND6 gene alteration is related to the specific features of Leigh syndrome, Leber hereditary optic neuropathy, or dystonia. It also remains unclear why a single mutation can cause such varied signs and symptoms in different people.

Genetics Home Reference provides information about Leigh syndrome, which is also associated with changes in the MT-ND6 gene.

Where is the MT-ND6 gene located?

The MT-ND6 gene is located in mitochondrial DNA.

Molecular Location in mitochondrial DNA: base pairs 14,148 to 14,672

Overview of gene located on mitochondrial DNA Close-up of gene located on mitochondrial DNA

Where can I find additional information about MT-ND6?

You and your healthcare professional may find the following resources about MT-ND6 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the MT-ND6 gene or gene products?

  • MTND6
  • NADH dehydrogenase 6
  • NADH dehydrogenase subunit 6
  • NADH-ubiquinone oxidoreductase chain 6
  • NADH-ubiquinone oxidoreductase, subunit ND6
  • ND6
  • NU6M_HUMAN

Where can I find general information about genes?

The Handbook provides basic information about genetics in clear language.

These links provide additional genetics resources that may be useful.

What glossary definitions help with understanding MT-ND6?

References (12 links)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? in the Handbook.

 
Reviewed: August 2006
Published: November 24, 2014