Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

PML

Reviewed April 2011

What is the official name of the PML gene?

The official name of this gene is “promyelocytic leukemia.”

PML is the gene's official symbol. The PML gene is also known by other names, listed below.

What is the normal function of the PML gene?

The PML gene provides instructions for a protein that acts as a tumor suppressor, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way. The PML protein is found in distinct structures in the nucleus of a cell called PML nuclear bodies (PML-NBs). In the PML-NBs, the PML protein interacts with other proteins that are involved in cell growth and division (proliferation) and self-destruction (apoptosis). The PML protein is able to block cell proliferation and induce apoptosis in combination with other proteins. Researchers believe that the structure of the PML-NBs is required for blocking proliferation and inducing apoptosis.

Does the PML gene share characteristics with other genes?

The PML gene belongs to a family of genes called RNF (RING-type zinc fingers). It also belongs to a family of genes called TRIM (tripartite motif-containing).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genefamilies) in the Handbook.

How are changes in the PML gene related to health conditions?

acute promyelocytic leukemia - caused by mutations in the PML gene

Gene mutations can be acquired during a person's lifetime and are present only in certain cells. These mutations are called somatic mutations, and they are not inherited. A somatic mutation involving the PML gene causes acute promyelocytic leukemia, a cancer of the blood forming tissue (bone marrow). Acute promyelocytic leukemia is characterized by an accumulation of immature white blood cells, called promyelocytes, in the bone marrow. A rearrangement (translocation) of genetic material between chromosomes 15 and 17, written as t(15;17), fuses part of the PML gene on chromosome 15 with part of another gene on chromosome 17 called RARA. The protein produced from this fused gene, PML-RARα, functions differently than the protein products of the normal PML and RARA genes.

The PML-RARα protein does not localize to the PML-NBs, and the structures do not form properly. The PML-RARα protein is unable to block cell proliferation or induce apoptosis.

Additionally, the function of the RARα protein, the product of the RARA gene, is disrupted. Normally, this protein is involved in the regulation of gene transcription, which is the first step in protein production. Specifically, this protein helps control the transcription of certain genes important in the maturation (differentiation) of white blood cells beyond the promyelocyte stage. However, the PML-RARα protein blocks (represses) gene transcription.

The PML-RARα protein allows abnormal cell proliferation and blocks the differentiation of white blood cells at the promyelocyte stage. As a result, excess promyelocytes accumulate in the bone marrow and normal white blood cells cannot form, leading to acute promyelocytic leukemia.

Where is the PML gene located?

Cytogenetic Location: 15q22

Molecular Location on chromosome 15: base pairs 73,994,672 to 74,047,818

The PML gene is located on the long (q) arm of chromosome 15 at position 22.

The PML gene is located on the long (q) arm of chromosome 15 at position 22.

More precisely, the PML gene is located from base pair 73,994,672 to base pair 74,047,818 on chromosome 15.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about PML?

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the PML gene or gene products?

  • MYL
  • promyelocytic leukemia, inducer of
  • promyelocytic leukemia protein
  • RING finger protein 71
  • RNF71
  • TRIM19
  • tripartite motif protein TRIM19

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding PML?

acute ; apoptosis ; bone marrow ; cancer ; cell ; cell proliferation ; chromosome ; differentiation ; gene ; gene transcription ; inherited ; leukemia ; localize ; motif ; mutation ; nucleus ; proliferation ; protein ; rearrangement ; somatic mutation ; stage ; tissue ; transcription ; translocation ; tumor ; white blood cells

You may find definitions for these and many other terms in the Genetics Home Reference Glossary (http://www.ghr.nlm.nih.gov/glossary).

References

  • Collins SJ. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia. 2002 Oct;16(10):1896-905. Review. (http://www.ncbi.nlm.nih.gov/pubmed/12357341?dopt=Abstract)
  • de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991 Aug 23;66(4):675-84. (http://www.ncbi.nlm.nih.gov/pubmed/1652369?dopt=Abstract)
  • NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/5371)
  • OMIM: ACUTE PROMYELOCYTIC LEUKEMIA, INDUCER OF (http://omim.org/entry/102578)
  • Pandolfi PP. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia. Hum Mol Genet. 2001 Apr;10(7):769-75. Review. (http://www.ncbi.nlm.nih.gov/pubmed/11257111?dopt=Abstract)
  • Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell. 2002 Jan 25;108(2):165-70. Review. (http://www.ncbi.nlm.nih.gov/pubmed/11832207?dopt=Abstract)
  • Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene. 2001 Oct 29;20(49):7186-203. Review. (http://www.ncbi.nlm.nih.gov/pubmed/11704847?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: April 2011
Published: August 25, 2014