Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions About   Site Map   Contact Us
 
Home A service of the U.S. National Library of Medicine®
 
 
Printer-friendly version
SHOX

SHOX

Reviewed January 2012

What is the official name of the SHOX gene?

The official name of this gene is “short stature homeobox.”

SHOX is the gene's official symbol. The SHOX gene is also known by other names, listed below.

Read more about gene names and symbols on the About page.

What is the normal function of the SHOX gene?

The SHOX gene provides instructions for making a protein that regulates the activity of other genes. On the basis of this role, the SHOX protein is called a transcription factor. The SHOX gene is part of a large family of homeobox genes, which act during early embryonic development to control the formation of many body structures. Specifically, the SHOX gene is essential for the development of the skeleton. It plays a particularly important role in the growth and maturation of bones in the arms and legs.

One copy of the SHOX gene is located on each of the sex chromosomes (the X and Y chromosomes) in an area called the pseudoautosomal region. Although many genes are unique to either the X or Y chromosome, genes in the pseudoautosomal region are present on both chromosomes. As a result, both females (who have two X chromosomes) and males (who have one X and one Y chromosome) have two functional copies of the SHOX gene in each cell.

Does the SHOX gene share characteristics with other genes?

The SHOX gene belongs to a family of genes called homeobox (homeoboxes). It also belongs to a family of genes called PAR (pseudoautosomal regions).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? in the Handbook.

How are changes in the SHOX gene related to health conditions?

Langer mesomelic dysplasia - caused by mutations in the SHOX gene

Langer mesomelic dysplasia results from genetic changes involving both copies of the SHOX gene in each cell. Deletions of this gene are the most common change responsible for this condition. Mutations in the SHOX gene can also cause the condition, as can deletions of nearby genetic material that normally helps regulate the gene's activity. These changes greatly reduce or eliminate the amount of SHOX protein that is produced. A lack of this protein disrupts normal bone development and growth starting before birth. The resulting skeletal abnormalities include very short stature, extreme shortening of the long bones in the arms and legs (mesomelia), and an abnormality of the wrist and forearm bones known as Madelung deformity.

Léri-Weill dyschondrosteosis - caused by mutations in the SHOX gene

Léri-Weill dyschondrosteosis results from genetic changes involving one copy of the SHOX gene in each cell. Most commonly, this skeletal disorder is caused by a deletion of the SHOX gene. Other genetic changes that can cause the disorder include mutations in the SHOX gene or deletions of nearby genetic material that normally helps regulate the gene's activity. These changes reduce the amount of SHOX protein that is produced. A shortage of this protein disrupts normal bone development and growth starting before birth. The resulting skeletal abnormalities are similar to those of Langer mesomelic dysplasia, although they tend to be less severe.

Turner syndrome - associated with the SHOX gene

Turner syndrome occurs when one normal X chromosome is present in a female's cells and the other sex chromosome is missing or structurally altered. Because the SHOX gene is located on the sex chromosomes, most women with Turner syndrome have only one copy of the gene in each cell instead of the usual two copies. Loss of one copy of this gene reduces the amount of SHOX protein that is produced. A shortage of this protein likely contributes to the short stature and skeletal abnormalities (such as unusual rotation of the wrist and elbow joints) often seen in females with this condition.

other disorders - caused by mutations in the SHOX gene

Deletions of the entire SHOX gene or mutations within or near the gene have been identified in some people with short stature. This short stature is usually described as idiopathic, which means it is not associated with the characteristic features of a disease or syndrome. However, some people with short stature and changes in the SHOX gene have been found to have subtle skeletal abnormalities.

Where is the SHOX gene located?

Cytogenetic Location: Xp22.33;Yp11.3

Molecular Location on the X chromosome and the Y chromosome: base pairs 624,343 to 659,410

The SHOX gene is located on the short (p) arm of the X chromosome at position 22.33 ; on the short (p) arm of the Y chromosome at position 11.3.

The SHOX gene is located on the short (p) arm of the X chromosome at position 22.33 ; on the short (p) arm of the Y chromosome at position 11.3.

More precisely, the SHOX gene is located from base pair 624,343 to base pair 659,410 on the X chromosome and the Y chromosome.

See How do geneticists indicate the location of a gene? in the Handbook.

Where can I find additional information about SHOX?

You and your healthcare professional may find the following resources about SHOX helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the SHOX gene or gene products?

  • GCFX
  • growth control factor, X-linked
  • PHOG
  • pseudoautosomal homeobox-containing osteogenic gene
  • SHOX_HUMAN
  • SS

Where can I find general information about genes?

The Handbook provides basic information about genetics in clear language.

These links provide additional genetics resources that may be useful.

What glossary definitions help with understanding SHOX?

cell ; chondrocyte ; chromosome ; deletion ; dysplasia ; embryonic ; gene ; homeobox ; idiopathic ; protein ; pseudoautosomal region ; sex chromosomes ; short stature ; stature ; syndrome ; transcription ; transcription factor

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

See also Understanding Medical Terminology.

References (12 links)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? in the Handbook.

 
Reviewed: January 2012
Published: September 15, 2014