Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

TAF1

Reviewed December 2008

What is the official name of the TAF1 gene?

The official name of this gene is “TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa.”

TAF1 is the gene's official symbol. The TAF1 gene is also known by other names, listed below.

What is the normal function of the TAF1 gene?

The TAF1 gene provides instructions for making part of a protein called transcription factor IID (TFIID). This protein is active in cells and tissues throughout the body, where it attaches (binds) to DNA. Transcription factor IID plays an essential role in regulating the activity of most genes.

The TAF1 gene is part of a complex region of DNA known as the TAF1/DYT3 multiple transcript system. This region consists of short stretches of DNA from the TAF1 gene plus some extra segments of genetic material near the gene. These stretches of DNA can be combined in different ways to create various sets of instructions for making proteins. Researchers believe that some of these variations are critical for the normal function of nerve cells (neurons) in the brain.

Does the TAF1 gene share characteristics with other genes?

The TAF1 gene belongs to a family of genes called chromatin-modifying enzymes (chromatin-modifying enzymes).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genefamilies) in the Handbook.

How are changes in the TAF1 gene related to health conditions?

X-linked dystonia-parkinsonism - caused by mutations in the TAF1 gene

Several changes in the TAF1/DYT3 multiple transcript system have been identified in people with X-linked dystonia-parkinsonism. Some alter single DNA building blocks (nucleotides) in the gene; these changes are described as disease-specific single-nucleotide changes (DSCs). Another genetic change deletes a small number of nucleotides from the gene. Researchers are uncertain how these changes are related to the movement abnormalities characteristic of the disease.

X-linked dystonia-parkinsonism may also be related to an extra segment of DNA in the TAF1/DYT3 multiple transcript system. The extra segment results from the insertion of a retrotransposon, which is a small piece of DNA that can move around to different positions in a cell's genetic material. When a retrotransposon inserts itself in or a near a gene, it can disrupt the gene's function. In this case, the retrotransposon insertion probably interferes with the normal function of the TAF1/DYT3 multiple transcript system.

Researchers suspect that changes in the TAF1/DYT3 multiple transcript system disrupt the regulation of critical genes in neurons. This defect leads to the eventual death of these cells, particularly in areas of the brain called the caudate nucleus and putamen. These regions are critical for normal movement, learning, and memory. It is unclear why the effects of changes in the TAF1/DYT3 multiple transcript system appear to be limited to dystonia and parkinsonism.

Where is the TAF1 gene located?

Cytogenetic Location: Xq13.1

Molecular Location on the X chromosome: base pairs 71,366,238 to 71,530,524

The TAF1 gene is located on the long (q) arm of the X chromosome at position 13.1.

The TAF1 gene is located on the long (q) arm of the X chromosome at position 13.1.

More precisely, the TAF1 gene is located from base pair 71,366,238 to base pair 71,530,524 on the X chromosome.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about TAF1?

You and your healthcare professional may find the following resources about TAF1 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the TAF1 gene or gene products?

  • BA2R
  • CCG1
  • CCGS
  • cell cycle, G1 phase defect
  • Cell cycle gene 1 protein
  • complementation of cell cycle block, G1-to-S
  • DYT3
  • DYT3/TAF1
  • KAT4
  • NSCL2
  • N-TAF1
  • P250
  • TAF1_HUMAN
  • TAF2A
  • TAFII250
  • TAFII-250
  • TAF(II)250
  • TATA box-binding protein-associated factor 1
  • TATA box-binding protein-associated factor 2A
  • TBP-associated factor 1
  • TBP-associated factor 250 kDa
  • TBP-associated factor, RNA polymerase II, 250-kD
  • transcription factor TFIID p250 polypeptide
  • Transcription initiation factor TFIID 250 kDa subunit
  • Transcription initiation factor TFIID subunit 1

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding TAF1?

caudate ; caudate nucleus ; cell ; cell cycle ; DNA ; dystonia ; gene ; insertion ; nucleotide ; nucleus ; parkinsonism ; protein ; putamen ; retrotransposon ; RNA ; RNA polymerase ; subunit ; transcript ; transcription ; transcription factor

You may find definitions for these and many other terms in the Genetics Home Reference Glossary (http://www.ghr.nlm.nih.gov/glossary).

References

  • Herzfeld T, Nolte D, Müller U. Structural and functional analysis of the human TAF1/DYT3 multiple transcript system. Mamm Genome. 2007 Nov;18(11):787-95. Epub 2007 Oct 19. (http://www.ncbi.nlm.nih.gov/pubmed/17952504?dopt=Abstract)
  • Maile T, Kwoczynski S, Katzenberger RJ, Wassarman DA, Sauer F. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science. 2004 May 14;304(5673):1010-4. Retraction in: McNutt M. Science. 2014 May 30;344(6187):981. (http://www.ncbi.nlm.nih.gov/pubmed/15143281?dopt=Abstract)
  • Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Dantes M, Lee LV, Ogasawara K, Tooyama I, Akatsu H, Nishimura M, Tamiya G. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet. 2007 Mar;80(3):393-406. Epub 2007 Jan 23. (http://www.ncbi.nlm.nih.gov/pubmed/17273961?dopt=Abstract)
  • Muller U, Herzfeld T, Nolte D. The TAF1/DYT3 multiple transcript system in X-linked dystonia-parkinsonism. Am J Hum Genet. 2007 Aug;81(2):415-7; author reply 417-8. (http://www.ncbi.nlm.nih.gov/pubmed/17668393?dopt=Abstract)
  • NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/6872)
  • Nolte D, Niemann S, Müller U. Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10347-52. Epub 2003 Aug 19. (http://www.ncbi.nlm.nih.gov/pubmed/12928496?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: December 2008
Published: July 21, 2014