Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions About   Site Map   Contact Us
 
Home A service of the U.S. National Library of Medicine®
 
 
Printer-friendly version
TNFRSF1A

TNFRSF1A

Reviewed August 2011

What is the official name of the TNFRSF1A gene?

The official name of this gene is “tumor necrosis factor receptor superfamily, member 1A.”

TNFRSF1A is the gene's official symbol. The TNFRSF1A gene is also known by other names, listed below.

Read more about gene names and symbols on the About page.

What is the normal function of the TNFRSF1A gene?

The TNFRSF1A gene provides instructions for making a protein called tumor necrosis factor receptor 1 (TNFR1). This protein is found spanning the membrane of cells, with part of the TNFR1 protein outside the cell and part of the protein inside the cell. Outside the cell, the TNFR1 protein attaches (binds) to another protein called tumor necrosis factor (TNF). The interaction of the TNF protein with the TNFR1 protein causes the TNFR1 protein to bind to two other TNFR1 proteins, forming a three-protein complex called a trimer. This trimer formation is necessary for the TNFR1 protein to be functional.

The binding of the TNF and TNFR1 proteins causes the TNFR1 protein to send signals inside the cell. Signaling from the TNFR1 protein can trigger either inflammation or self-destruction of the cell (apoptosis). Signaling within the cell initiates a pathway that turns on a protein called nuclear factor kappa B, which triggers inflammation and leads to the production of immune system proteins called cytokines. Apoptosis is initiated when the TNFR1 protein, bound to the TNF protein, is brought into the cell and starts a process known as the caspase cascade.

Does the TNFRSF1A gene share characteristics with other genes?

The TNFRSF1A gene belongs to a family of genes called CD (CD molecules). It also belongs to a family of genes called TNFRSF (tumor necrosis factor receptor superfamily).

A gene family is a group of genes that share important characteristics. Classifying individual genes into families helps researchers describe how genes are related to each other. For more information, see What are gene families? in the Handbook.

How are changes in the TNFRSF1A gene related to health conditions?

tumor necrosis factor receptor-associated periodic syndrome - caused by mutations in the TNFRSF1A gene

More than 60 mutations in the TNFRSF1A gene have been found to cause tumor necrosis factor receptor-associated periodic syndrome (commonly known as TRAPS). Most of these mutations lead to changes in single protein building blocks (amino acids), typically involving the amino acid cysteine. Cysteines contain sulfur atoms that form connections, called disulfide bonds, with other cysteines. Disulfide bonds help a protein fold by connecting cysteines in different regions of the protein. These bonds stabilize the protein and give it the appropriate shape to carry out its particular function.

When cysteines within the TNFR1 protein are replaced with other amino acids, the disulfide bonds are not formed, and the protein is misfolded. These misfolded proteins are trapped within the cell, unable to get to the cell surface to interact with TNF. Inside the cell, these proteins clump together and are thought to trigger alternative pathways that initiate inflammation. The clumps of protein constantly activate these alternative inflammation pathways, leading to excess inflammation in people with TRAPS. Additionally, because only one copy of the TNFRSF1A gene has a mutation, some normal TNFR1 proteins are produced and can bind to the TNF protein, leading to additional inflammation. It is unclear if disruption of the apoptosis pathway plays a role in the signs and symptoms of TRAPS.

Some people with mutations in the TNFRSF1A gene do not develop TRAPS, or they develop very mild features of the disorder. The reason for this variability is unclear, but researchers believe that other factors, such as additional genetic changes or environmental factors, may play a role in causing TRAPS.

Genetics Home Reference provides information about multiple sclerosis, which is also associated with changes in the TNFRSF1A gene.

Where is the TNFRSF1A gene located?

Cytogenetic Location: 12p13.2

Molecular Location on chromosome 12: base pairs 6,328,756 to 6,342,116

The TNFRSF1A gene is located on the short (p) arm of chromosome 12 at position 13.2.

The TNFRSF1A gene is located on the short (p) arm of chromosome 12 at position 13.2.

More precisely, the TNFRSF1A gene is located from base pair 6,328,756 to base pair 6,342,116 on chromosome 12.

See How do geneticists indicate the location of a gene? in the Handbook.

Where can I find additional information about TNFRSF1A?

You and your healthcare professional may find the following resources about TNFRSF1A helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the TNFRSF1A gene or gene products?

  • p55
  • p55-R
  • TNF-R
  • TNFR1
  • TNF-R1
  • TNFR55
  • TNF-R55
  • TNFR-I
  • TNR1A_HUMAN
  • tumor necrosis factor-alpha receptor
  • tumor necrosis factor binding protein 1
  • tumor necrosis factor receptor superfamily member 1A
  • tumor necrosis factor receptor type 1

Where can I find general information about genes?

The Handbook provides basic information about genetics in clear language.

These links provide additional genetics resources that may be useful.

What glossary definitions help with understanding TNFRSF1A?

acids ; amino acid ; apoptosis ; caspase ; cell ; cysteine ; gene ; immune system ; inflammation ; mutation ; necrosis ; protein ; receptor ; sclerosis ; syndrome ; tumor

You may find definitions for these and many other terms in the Genetics Home Reference Glossary.

See also Understanding Medical Terminology.

References (7 links)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? in the Handbook.

 
Reviewed: August 2011
Published: December 22, 2014